Lesson No.30

Concepts of Multitasking

To experience the power of assembly language we introduce how to implement multitasking. We observed in the debugger that our thread of instructions was broken by the debugger; it got the control, used all registers, displayed an elaborate interface, waited for the key, and then restored processor state to what was immediately before interruption. Our program resumed as if nothing happened. The program execution was in the same logical flow. 

If we have two different programs A and B. Program A is broken, its state saved, and returned to B instead of A. By looking at the instruction set, we can immediately say that nothing can stop us from doing that. IRET will return to whatever CS and IP it finds on the stack. Now B is interrupted somehow, its state saved, and we return back to A. A will have no way of knowing that it was interrupted as its entire environment has been restored. It never knew the debugger took control when it was debugged. It sill has no way of gaining this knowledge. If this work of breaking and restoring programs is done at high speed the user will feel that all the programs are running at the same time where actually they are being switched to and forth at high speed.

In essence multitasking is simple, even though we have to be extremely careful when implementing it. The environment of a program in the very simple case is all its registers and stack. We will deal with stack later. Now to get control from the program without the program knowing about it, we can use the IRQ 0 highest priority interrupt that is periodically coming to the processor. 

Now we present a very basic example of multitasking. We have two subroutines written in assembly language. All the techiniques discussed here are applicable to code written in higher level languages as well. However the code to control this multitasking cannot be easily written in a higher level language so we write it in assembly language. The two subroutines rotate bars by changing characters at the two corners of the screen and have infinite loops. By hooking the timer interrupt and saving and restoring the registers of the tasks one by one, it appears that both tasks are running simultaneously.

	
	Example 11.1

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036
037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085
	; elementary multitasking of two threads 
[org 0x0100]

              jmp start

              ;   ax,bx,ip,cs,flags storage area

taskstates:   dw   0, 0, 0, 0, 0      ; task0 regs

              dw   0, 0, 0, 0, 0      ; task1 regs

              dw   0, 0, 0, 0, 0      ; task2 regs

current:      db   0                  ; index of current task
chars:        db   '\|/-'             ; shapes to form a bar
; one task to be multitasked
taskone:      mov  al, [chars+bx]     ; read the next shape
              mov  [es:0], al         ; write at top left of screen
              inc  bx                 ; increment to next shape
              and  bx, 3              ; taking modulus by 4
              jmp  taskone            ; infinite task
; second task to be multitasked
tasktwo:      mov  al, [chars+bx]     ; read the next shape
              mov  [es:158], al       ; write at top right of screen
              inc  bx                 ; increment to next shape
              and  bx, 3              ; taking modulus by 4
              jmp  tasktwo            ; infinite task
; timer interrupt service routine
timer:        push ax

              push bx
              mov  bl, [cs:current]   ; read index of current task
              mov  ax, 10             ; space used by one task 
              mul  bl                 ; multiply to get start of task
              mov  bx, ax             ; load start of task in bx
              pop  ax                 ; read original value of bx
              mov  [cs:taskstates+bx+2], ax ; space for current task
              pop  ax                 ; read original value of ax

              mov  [cs:taskstates+bx+0], ax ; space for current task
              pop  ax                 ; read original value of ip
              mov  [cs:taskstates+bx+4], ax ; space for current task
              pop  ax                 ; read original value of cs
              mov  [cs:taskstates+bx+6], ax ; space for current task
              pop  ax                 ; read original value of flags
              mov  [cs:taskstates+bx+8], ax ; space for current task
              inc  byte [cs:current]  ; update current task index
              cmp  byte [cs:current], 3 ; is task index out of range
              jne  skipreset          ; no, proceed
              mov  byte [cs:current], 0 ; yes, reset to task 0
skipreset:    mov  bl, [cs:current]   ; read index of current task
              mov  ax, 10             ; space used by one task 
              mul  bl                 ; multiply to get start of task
              mov  bx, ax             ; load start of task in bx
              mov  al, 0x20

              out  0x20, al           ; send EOI to PIC
              push word [cs:taskstates+bx+8] ; flags of new task
              push word [cs:taskstates+bx+6] ; cs of new task
              push word [cs:taskstates+bx+4] ; ip of new task
              mov  ax, [cs:taskstates+bx+0]  ; ax of new task
              mov  bx, [cs:taskstates+bx+2]  ; bx of new task
              iret                    ; return to new task
start:        mov  word [taskstates+10+4], taskone ; initialize ip
              mov  [taskstates+10+6], cs     ; initializae cs
              mov  word [taskstates+10+8], 0x0200 ; initialize flags
              mov  word [taskstates+20+4], tasktwo ; initialize ip
              mov  [taskstates+20+6], cs     ; initializae cs
              mov  word [taskstates+20+8], 0x0200 ; initialize flags
              mov  word [current], 0         ; set current task index
              xor  ax, ax

              mov  es, ax                    ; point es to IVT base 
              cli                            
              mov  word [es:8*4], timer

              mov  [es:8*4+2], cs            ; hook timer interrupt
              mov  ax, 0xb800

              mov  es, ax                    ; point es to video base

              xor  bx, bx                    ; initialize bx for tasks

              sti

              jmp $                          ; infinite loop


The space where all registers of a task are stsored is called the process control block or PCB. Actual PCB contains a few more things that are not relevant to us now. INT 08 that is saving and restoring the registers is called the scheduler and the whole event is called a context switch. 

Elaborate Multitasking

In our next example we will save all 14 registers and the stack as well. 28 bytes are needed by these registers in the PCB. We add some more space to make the size 32, a power of 2 for easy calculations. One of these words is used to form a linked list of the PCBs so that strict ordering of active PCBs is not necessary. Also in this example we have given every thread its own stack. Now threads can have function calls, parameters and local variables etc. Another important change in this example is that the creation of threads is now dynamic. The thread registration code initializes the PCB, and adds it to the linked list so that the scheduler will give it a turn. 

	
	Example 11.2

	001

002

003

004

005

006

007

008
009

010

011

012

013

014-057
058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111
112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211
212
	; multitasking and dynamic thread registration 

[org 0x0100]

              jmp start

; PCB layout:
; ax,bx,cx,dx,si,di,bp,sp,ip,cs,ds,ss,es,flags,next,dummy

;  0, 2, 4, 6, 8,10,12,14,16,18,20,22,24,  26 , 28 ,  30

pcb:          times 32*16 dw 0        ; space for 32 PCBs
stack:        times 32*256 dw 0       ; space for 32 512 byte stacks
nextpcb:      dw   1                  ; index of next free pcb
current:      dw   0                  ; index of current pcb
lineno:       dw   0                  ; line number for next thread
;;;;; COPY LINES 028-071 FROM EXAMPLE 10.1 (printnum) ;;;;;
; mytask subroutine to be run as a thread

; takes line number as parameter
mytask:       push bp

              mov  bp, sp

              sub  sp, 2              ; thread local variable
              push ax

              push bx

              mov  ax, [bp+4]         ; load line number parameter
              mov  bx, 70             ; use column number 70
              mov  word [bp-2], 0     ; initialize local variable 
printagain:   push ax                 ; line number 
              push bx                 ; column number 
              push word [bp-2]        ; number to be printed
              call printnum           ; print the number 
              inc  word [bp-2]        ; increment the local variable
              jmp  printagain         ; infinitely print
              pop  bx

              pop  ax

              mov  sp, bp

              pop  bp

              ret

; subroutine to register a new thread

; takes the segment, offset, of the thread routine and a parameter 

; for the target thread subroutine
initpcb:      push bp

              mov  bp, sp

              push ax

              push bx

              push cx

              push si

              mov  bx, [nextpcb]      ; read next available pcb index
              cmp  bx, 32             ; are all PCBs used
              je   exit               ; yes, exit
              mov  cl, 5              

              shl  bx, cl             ; multiply by 32 for pcb start
              mov  ax, [bp+8]         ; read segment parameter
              mov  [pcb+bx+18], ax    ; save in pcb space for cs 
              mov  ax, [bp+6]         ; read offset parameter
              mov  [pcb+bx+16], ax    ; save in pcb space for ip
              mov  [pcb+bx+22], ds    ; set stack to our segment
              mov  si, [nextpcb]      ; read this pcb index
              mov  cl, 9              
              shl  si, cl             ; multiply by 512 
              add  si, 256*2+stack    ; end of stack for this thread
              mov  ax, [bp+4]         ; read parameter for subroutine
              sub  si, 2              ; decrement thread stack pointer
              mov  [si], ax           ; pushing param on thread stack
              sub  si, 2              ; space for return address

              mov  [pcb+bx+14], si    ; save si in pcb space for sp
              mov  word [pcb+bx+26], 0x0200 ; initialize thread flags

              mov  ax, [pcb+28]       ; read next of 0th thread in ax
              mov  [pcb+bx+28], ax    ; set as next of new thread
              mov  ax, [nextpcb]      ; read new thread index   

              mov  [pcb+28], ax       ; set as next of 0th thread
              inc  word [nextpcb]     ; this pcb is now used

exit:         pop  si

              pop  cx

              pop  bx

              pop  ax

              pop  bp

              ret  6

; timer interrupt service routine
timer:        push ds

              push bx
              push cs

              pop  ds                 ; initialize ds to data segment

              mov  bx, [current]      ; read index of current in bx
              shl  bx, 1

              shl  bx, 1

              shl  bx, 1

              shl  bx, 1

              shl  bx, 1              ; multiply by 32 for pcb start
              mov  [pcb+bx+0], ax     ; save ax in current pcb
              mov  [pcb+bx+4], cx     ; save cx in current pcb
              mov  [pcb+bx+6], dx     ; save dx in current pcb
              mov  [pcb+bx+8], si     ; save si in current pcb
              mov  [pcb+bx+10], di    ; save di in current pcb
              mov  [pcb+bx+12], bp    ; save bp in current pcb
              mov  [pcb+bx+24], es    ; save es in current pcb
              pop  ax                 ; read original bx from stack
              mov  [pcb+bx+2], ax     ; save bx in current pcb
              pop  ax                 ; read original ds from stack
              mov  [pcb+bx+20], ax    ; save ds in current pcb
              pop  ax                 ; read original ip from stack
              mov  [pcb+bx+16], ax    ; save ip in current pcb
              pop  ax                 ; read original cs from stack
              mov  [pcb+bx+18], ax    ; save cs in current pcb
              pop  ax                 ; read original flags from stack
              mov  [pcb+bx+26], ax    ; save cs in current pcb
              mov  [pcb+bx+22], ss    ; save ss in current pcb
              mov  [pcb+bx+14], sp    ; save sp in current pcb
              mov  bx, [pcb+bx+28]    ; read next pcb of this pcb
              mov  [current], bx      ; update current to new pcb
              mov  cl, 5             
              shl  bx, cl             ; multiply by 32 for pcb start
              mov  cx, [pcb+bx+4]     ; read cx of new process
              mov  dx, [pcb+bx+6]     ; read dx of new process
              mov  si, [pcb+bx+8]     ; read si of new process
              mov  di, [pcb+bx+10]    ; read diof new process
              mov  bp, [pcb+bx+12]    ; read bp of new process
              mov  es, [pcb+bx+24]    ; read es of new process
              mov  ss, [pcb+bx+22]    ; read ss of new process
              mov  sp, [pcb+bx+14]    ; read sp of new process
              push word [pcb+bx+26]   ; push flags of new process
              push word [pcb+bx+18]   ; push cs of new process
              push word [pcb+bx+16]   ; push ip of new process
              push word [pcb+bx+20]   ; push ds of new process
              mov  al, 0x20

              out  0x20, al           ; send EOI to PIC
              mov  ax, [pcb+bx+0]     ; read ax of new process
              mov  bx, [pcb+bx+2]     ; read bx of new process
              pop  ds                 ; read ds of new process
              iret                    ; return to new process
start:        xor  ax, ax

              mov  es, ax             ; point es to IVT base 
              cli

              mov  word [es:8*4], timer

              mov  [es:8*4+2], cs     ; hook timer interrupt
              sti

nextkey:      xor ah, ah              ; service 0 – get keystroke
              int 0x16                ; bios keyboard services

              push cs                 ; use current code segment
              mov  ax, mytask       
              push ax                 ; use mytask as offset
              push word [lineno]      ; thread parameter
              call initpcb            ; register the thread

              inc  word [lineno]      ; update line number 
              jmp  nextkey            ; wait for next keypress

	
	


  When the program is executed the threads display the numbers independently. However as keys are pressed and new threads are registered, there is an obvious slowdown in the speed of multitasking. To improve that, we can change the timer interrupt frequency. The following can be used to set to an approximately 1ms interval.

mov  ax, 1100
out  0x40, al
mov  al, ah
out  0x40, al
This makes the threads look faster. However the only real change is that the timer interrupt is now coming more frequently.

